GDF-15 enhances intracellular Ca2+ by increasing Cav1.3 expression in rat cerebellar granule neurons
نویسندگان
چکیده
GDF-15 (growth/differentiation factor 15) is a novel member of the TGF (transforming growth factor)-β superfamily that has critical roles in the central and peripheral nervous systems. We reported previously that GDF-15 increased delayed rectifier outward K(+) currents and Kv2.1 α subunit expression through TβRII (TGF-β receptor II) to activate Src kinase and Akt/mTOR (mammalian target of rapamycin) signalling in rat CGNs (cerebellar granule neurons). In the present study, we found that treatment of CGNs with GDF-15 for 24 h increased the intracellular Ca(2+) concentration ([Ca(2+)]i) in response to membrane depolarization, as determined by Ca(2+) imaging. Whole-cell current recordings indicated that GDF-15 increased the inward Ca(2+) current (ICa) without altering steady-state activation of Ca(2+) channels. Treatment with nifedipine, an inhibitor of L-type Ca(2+) channels, abrogated GDF-15-induced increases in [Ca(2+)]i and ICa The GDF-15-induced increase in ICa was mediated via up-regulation of the Cav1.3 α subunit, which was attenuated by inhibiting Akt/mTOR and ERK (extracellular-signal-regulated kinase) pathways and by pharmacological inhibition of Src-mediated TβRII phosphorylation. Given that Cav1.3 is not only a channel for Ca(2+) influx, but also a transcriptional regulator, our data confirm that GDF-15 induces protein expression via TβRII and activation of a non-Smad pathway, and provide novel insight into the mechanism of GDF-15 function in neurons.
منابع مشابه
Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels
Growth differentiation factor-15 (GDF-15) has been implicated in ischemic brain injury and synapse development, but its involvement in modulating neuronal excitability and synaptic transmission remain poorly understood. In this study, we investigated the effects of GDF-15 on non-evoked miniature excitatory post-synaptic currents (mEPSCs) and neurotransmitter release in the medial prefrontal cor...
متن کاملActivity-dependent expression of parathyroid hormone-related protein (PTHrP) in rat cerebellar granule neurons. Requirement of PTHrP for the activity-dependent survival of granule neurons.
To identify genes whose expression is neuronal activity-dependent, we used an mRNA differential display technique and discovered that parathyroid hormone-related protein (PTHrP) is expressed in an activity-dependent manner in primary cultures of rat cerebellar granule neurons. PTHrP mRNA was expressed as early as 1 h by the addition of KCl to a final concentration of 25 mM to the culture medium...
متن کاملNeuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study
Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss(Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pupsCerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were preparedand cultured. The experiments were performed after 8 days in culture. The plant was collected fromthe northeastern part (Ruin re...
متن کاملNeuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study
Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss(Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pupsCerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were preparedand cultured. The experiments were performed after 8 days in culture. The plant was collected fromthe northeastern part (Ruin re...
متن کاملStereological Estimation of Granule Cell Number and Purkinje Cell Volume in the Cerebellum of Noise-Exposed Young Rat
In spite of the existing reports on behavioural and biochemical changes related to the cerebellum due to noise stress, not much is known about the effect of noise stress on the neuronal changes in the cerebellum. The present study aims at investigating the effects from one week noise exposure on granule cell number and Purkinje cell volume within the neonate rat cerebellum.15-day-old male Wista...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 473 شماره
صفحات -
تاریخ انتشار 2016